PHYSICAL REVIEW E, VOLUME 64, 016220
Perturbed on-off intermittency
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A basic requirement for on-off intermittency to occur is that the system possesses an invariant subspace. We
address how on-off intermittency manifests itself when a perturbation destroys the invariant subspace. In
particular, we distinguish between situations where the threshold for measuring the on-off intermittency in
numerical or physical experiments is much larger than or is comparable to the size of the perturbation. Our
principal result is that, as the perturbation parameter increases from zero, a metamorphosis in on-off intermit-
tency occurs in the sense that scaling laws associated with physically measurable quantities change abruptly. A
geometric analysis, a random-walk model, and numerical computations support the result.
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[. INTRODUCTION behavior akin to on-off intermittency still can be observed
readily.

The phenomenon of on-off intermittency in nonlinear sys- There are two important scales in the problgdh The
tems has been an area of continuing intefgst4]. Phenom- first scale is the thresholg, of a variabley transverse to the
enologically, a system in on-off intermittency exhibits two invariant manifold. The system is said to be in Wi state
distinct states in the course of time evolution. One is thewheny<yy,. The second scale is the perturbation parameter
“off” state, where the dynamical variables remain approxi- 7 that characterizes the extent of the symmetry breaking.
mately constant in various time intervals. The other is theLoosely speakingyy, represents a numerical accuracy or an
“on” state, which corresponds to intermittent “bursts” of experimental measurement scale. There are then two differ-
the dynamical variables away from their approximately con-ent regimes of dynamical interest: one for whigh~ » and
stant values in the “off”’ state. The characterization of on-off another one for whicty,> 7. These regimes correspond,
intermittency and the dynamical mechanigrkresponsible respectively, to a situation where the symmetry breaking is
for it have been investigated activellg—4], due in part to readily discernible and to a situation where it is not. We find
their relevance to chaos synchronizat{@,7]. that a qualitative change in the characteristics of on-off in-

A basic dynamical requirement for on-off intermittency to termittency occurs immediately agis increased from zero
occur is that the underlying system possess an invariant suli? both cases.
spaceM. Consider the situation where there is a chaotic set Our principal results are the followingl) There is a
in the invariant subspace. A typical trajectory on the chaotimatural way to define a laminar phase whgg~ 7>0. (2)
set is unstable ioV, but in the subspacgtransverse to\f,  There is a crossover in the probability distribution of the
the trajectory can be either stable or unstable. If there is néaminar phases from algebraic to exponentiab@ascreases
other attracting set in the phase space, on-off intermittencfrom 0 in both cases, no matter how smalimay be.(3) If
can occur when the trajectory is slightly unstableZifl—4].  y> n then the fractal dimension of the on-off intermittent
The time® that a trajectory spends in the “off” state, also time series changes discontinuously from 1/2 to lyai®-
called thelaminar phase has been shown to obey the fol- creases from zer@¢4) The mean length of the laminar phase
lowing algebraic probability distribution at the onset of on- becomes very short fory,~ 7.
off intermittency [3]: ®(®)~0 %2 Subsequently, it has An implication of our results is that while on-off intermit-
been showr4] that at the onset, the time trace of an on-off tency can indeed be observed easily in many practical situa-
intermittent variable is a fractal time series with box- tions, care should be exercised when interpreting the statis-
counting dimensioD,=1/2. We note that the existence of tical properties of the on-off intermittent time series. For
an invariant subspace, which is usually due to a simple syminstance, it may be natural for an experimentalist to report
metry of the system, appears essential for on-off intermitthe observation of on-off intermittency, together with an ap-
tency to occur. proximate power-law probability distribution of the laminar

In this paper we investigate how on-off intermittency is phase. But if there is a small amount of symmetry breaking,
affected when there is a perturbation so that the invarianthen such a distribution may be better described by an expo-
subspace no longer exists. If the unperturbed system posential distribution. A measurement of the fractal dimension
sesses a symmetry, then the perturbation is equivalent to@f the on-off intermittent time series may also be a good
symmetry breaking. We expect such perturbations to be inindicator of whether there is a symmetry breaking in the
evitable, say, in laboratory experiments. Symmetry breakingystem.
also arises naturally in the context of synchronization be- The rest of the paper is organized as follows. Section |
tween nonindentical chaotic oscillatd&. When such a per- analyzes the casg,~ » by geometric arguments. Section lll
turbation is present, we find in numerical experiments thatiscusses the case wherg> » by analyzing a biased ran-
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FIG. 2. A schematic illustration of the dynamics of Eg) near
the origin. The curves starting at ¢f), are representative graphs of
0 200 400, 600 800 1000 Eq. (2) for different choices ok.

FIG. 1. Intermittent time series foy, from Eq. (1) with a . C I .
=2.8 for(a) 7=0; (b) 7=10"3. Fn o @ duces a uniform distribution fox [0,1]. The initial condi-

tions are the same for each case. Using visual accuracy as the

dom walk model. A summary discussion is presented in Sedhreshold, Fig. () represents the case wheyg~7. The
\Va time series in Fig. (&) displays the hallmark of on-off inter-
mittent behavior: long periods of nearly constant signal
(laminar phasesinterrupted by short-lived, large-amplitude
bursts; the plot shows fdterations. Many laminar phases

We motivate our analysis by studying a class of two-last for several hundred iterations. The time series in Fig.
dimensional maps introduced by Heagpyal.[3], with modi-  1(b) is qualitatively similar, even though the symmetry has
fications to include the effect of a perturbation that destroydeen broken, but it appears more noisy and seems to have
the invariant subspace. We confine our attention to maps afhorter laminar phasesnly 10° iterations are shown Our

IIl. MEASURABLE SYMMETRY BREAKING

the form goal is to determine to what extent the time series in Fig.
1(b) can still be characterized as on-off intermittent.
Xn+1= f(Xn), @ On-off intermittency, as illustrated in Fig(d), consists of
laminar phases that begin when an orbit is reinjected into a
Yn+1=a%yn(1=yn)+ 7, small neighborhood of the invariant manifold. The bursts

occur when the orbit escapes from the small neighborhood.
We will show that there is a natural extension of this idea to

E[to’lt]) 'ff a driving \;arlalbliﬁ 'Sf a plarafmeter, ang is thg the case where a symmetry breaking destroys the invariant
perturbation parameter. in this family OFf Mapxorresponas ., o nicq1q  We focus our analysis on the family of maps in

to an on-off intermittent variable when=0, because there Eq. (1)
Is an invariant subspace, namely the live 0. The onset of When >0, there is no longer an invariant manifold at
on-off intermittency is determined by the conditiolm ax y=0 for Eq. (1), and so there is no notion of a transverse

=/[In(ax)]p(x) dx=0, wherep(x) is the probability density | yapunov exponent. We focus on the dynamics ofytiveri-
function of the chaotic variable In the simplest case where 5o given by

p is the uniform densitye.g., wherf is the tent map on-off
intermittency occurs whea=a.=e. Fora=a., the prob- Vni1=aXpyYn(l—yn) + 7. 2
ability distribution of the laminar phases follows the univer-
sal algebraic scaling law with exponent3/2, which has Ei 5 sh h tic illustrati f : h
been supported by numerical experiments using a variety gfldure = shows a scnematic ifustration ot a region near the
chaotic driving dynamic§10]. origin. The straight lines extendm_g from ¢f), are the graphs
of Eq. (2) for some representative values xf where the
topmost line corresponds to=1, the horizontal line corre-
sponds tax=0, and other lines represent other valuesof
Figure 1 shows two representative time series generated[0,1]. Note thaty,= »>0 for all n. Now consider an iter-
by Eq. (1) for a=2.8. Figure 1a) corresponds to a perfectly atey,, that is slightly larger tham. Given anyy,_;[0,1],
symmetric system #=0) and Fig. 1b) corresponds to a there exists exactly ong in Eq. (2) such thaty,_; is the
system with symmetry breakingn&1073), wheref pro-  preimage ofy,. If y, is sufficiently large, then the corre-

where f yields a chaotic process on the unit interval,

A. Perturbed “off” state
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sponding point in the phase space has no preimages. For 0.003

exampley,=r can never be reached by the m@pwith the (y) (@ 002

giveny,_, for x e[0,1]. The largest valug,=s, for which p py)

there exists an such that every point,,_; in (0,1) can be a 0.002! worl | M1 =0.0001

preimage ok, iss,=an(1—7)+ 7. Lgt Sdenote the inter- n=0.001

val [ 7n,s,], let I=[z,z+ 6z] be a subinterval o and let 1=0.001

P(z) 6z denote the probability that 1. Then 0 e
0.001 | 1002 000, 006 0008 001

1
P(2) o= | _P(yP(ly)dy, =001

0 \

whereP(z|y) is the transition probability that a given point 0 002 004 006 008 0.1
in the unit interval maps intd. For a fixedy e[ »,1], this y
probability is the same as the probability that

.0003 .
z—ny z+d6z—7 p(y) (®) "
X , . i
"Slay(1-y) ay(1-y) Py
0002 L 0.001
Sincex is assumed to be uniformly distributed in (0,1), this n =0.001
probability is just the length of the intervaliz/ay(1-y). I . n=.0
Thus, ify €[ ,1], then the probability thagy maps intol is 0001 | 0 000F 0004 0005 0068 001 |
P | 1)) = L Jl oz d 3
(Yn+1e |yne[771 ])_m(s) nay(l_y) ya ( ) 0

0 002 004 006 008 0.1
wherem(S)=an(1— ») denotes the length of the intenal y
This analysis does not depend on any specific choiceoof
6z, as long as the resulting intervalis contained inS
Hence, the probability density of thg component of the
orbits of Eq.(2) is constant ors.

This result is illustrated by the numerical simulations
shown in Fig. 3. Figure @& shows the probability density
p(y) of they components of orbits of Eq1) for a=1.5 and
three different choices of the perturbation parametefhe This analysis suggests that it is reasonable to regard the
unit interval has been divided into A@&qual subintervals, dynamics of Eq(1) as on-off intermittent even in the pres-
and Eq.(1) has been iterated 1Gimes. The plot shows a ence of symmetry breaking. We regard the dynamics as be-
histogram of the fraction of thg components that is con- ing in an “off” state or laminar phase whenever the orbit
tained in each subintervalThe inset shows similar data, but lies in S=[7,an(1— )+ »]. The dynamics “burst” or fall
the horizontal axis has been magnified to make the int&val INto an “on” state whenever the orbit leaves the intergal
more visible) The probability density of orbits that lie to the This definition has the added property that the laminar phase
right of S appears to drop off exponentially. Figurébs 1S f(_aayureless with respect to _the probabl!ny measure of the
shows analogous plots far=2.8. orbit, i.e., the probability density of orbits in every subinter-

Additional analysis illustrates the impact of the symmetryvaI of Sis uniform.
breaking on the probability distributions of the orbits. Sup-
pose thata<e. As n»—0, the intervalS shrinks and moves
towards 0. At the same time, the probability that a given
iteratey lies in Sincreases, and the limiting distribution is a
6 function aty=0. Next suppose tha=e. Even asp—0,
there is a positive probability that a given itergtbes to the
right of S, because the origin is not a sink for E§) when
a>e.

Figure 4 shows some numerical computations of the prob
ability that a given poiny lies to the right ofSas a function
of the perturbation parameter for three choices o&. If a
<e, then the probability that a given iterate lies to the right P(Yns1¢9SlyeS) =1—Xqiy)
of Stends to 0 agy— 0, but ifa=e, then the probability that
a given iterate lies to the right @& tends to a positive con- 1 F’?( n(1- 77))

stant asp—0. “m(S) Cy(1-y)

FIG. 3. The numerically computed probability densify) of
they component of orbits of EqJ1) for (a) a=1.5 and(b) a=2.8.
Each inset shows an enlargement of tie 0.001 curve for &y
<0.01. In addition, each inset includes a new cupfg) for »
=0.0001. All together, for botlia) and (b), three different cases,
corresponding to three different values pf are shown.

B. Laminar phases

We continue the geometric analysis illustrated in Fig. 2.
An iteratey such thaty<s,=an(1— )+ 7 is in an “off”
state (laminar phasg and an iteratey>s, is in an “on”
state(burs). As above, we leB=[ 7,s,].

Suppose thay, ;e S. We definexg;(y,_1) to be the
largest value ok such thaty,e S; in general X¢i(y) = 7(1
—n)y(1—y). Sincex is uniformly distributed in 0,1], the
probability thatx is larger thanxg(y) is 1—X¢i(y). An
analysis similar to that leading to EB) implies that

7
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FIG. 4. The fraction of time that orbits of E¢l) spend outside
the intervalS as a function of the perturbation. The circles give
numerically computed results for the case wheree; the squares,
a=e; and the dotsa<e.

wherem(S)=an(1— n) denotes the length of the intenval
Let Pg denote the probability thay,.;eS wheny,eS.
Then

1 (sym(l—7n) 1
dz=—In

- a(l-»n)+1
“m(S)), z(1-z2) a

l—ang

Ps (4)

The probability of having a laminar phase of lengthis
simply the probability that the first iterates lie inSand the
(n+1)st leavess, i.e., PY(1—Py). Thus, the lengths of the
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FIG. 5. The mean laminar phase lengdthof orbits of Eq.(1)
when a=2.75. The solid line is a graph of the theoretically pre-
dicted length, Eq(5), as a function ofp, and the boxes are numeri-
cally computed values dfl.

merical evidence and a random walk model, that the follow-
ing two properties hold whem#0 and the liney=0 is no
longer invariant.(1) The distribution of the laminar phases
becomes exponential, no matter how smalimay be.(2)
The fractal dimension of the set of intersecting points of the
on-off intermittent time series aty, changes abruptly from
1/2 to 1 asy is increased from zero.

A. Numerical evidence

As a numerical experiment, we choo&) to be the tent
map, sek=2.75, and iterate Edq1) until we accumulate 10
laminar phasegl2]. For this purpose, we regard an itergite
as being in a laminar phase yf,<yy=10 2. Figure Ga)
shows a plot of the fractiod(®) of laminar phases as a
function of their length® for two different values of the

laminar phases are exponentially distributed. Exponentiabymmetry breaking parametgr The plot is semilogarithmic
distributions of laminar phases have also been seen in mapsd suggests that the lengths of the laminar phases are expo-

of the formy,,, ,=2z,f(y,) + 6,10 ", whered,, is a bounded
noise process and>0 scales the noise amplitud#1].

nentially distributed, i.e.®(0®)~ expb®) for some con-
stant b that depends ony. The exponential behavior of

Numerical simulations confirm that there are laminar®(®) in this case is evident even for small values ®f
phases whose length is of order 10. It is possible to computgigure Gb) shows the contrasting situation wheye=0 and
the probability distribution of the laminar phases numericallythe liney=0 is an invariant subspace. Here the distribution
for values ofn up to several dozen, but long laminar phasesdp(®) appears to be algebraic, i.&,(0)~ @ for a con-

are rare events. As a result, the mean lemdtbf the laminar
phases is short,

M=(1-P nPl= ,
( S)n; ST1-Pg

©)

stantg; in fact, 8= —3/2[3].

a)
log;o ©(©)

0
\\ n>0
2 \
R e n= 10—8
\“"’w»,,‘

wherePg, which depends om, is given by Eq.4). % '\mn= 167t |
Figure 5 shows a pldfsolid line) of Eq. (5) as a function 0 200 400 g 600 800 1000

of » whena=2.75. The boxes are numerical computations 0 {B

of M for selected values of, using Eqg.(1). Notice thatM is 1og10q>(012

roughly constant forp<10 2. Because the value dfl is

close to 1 for small values o#, the system remains in the 4

interval S for only two iterations on the average. -6 - - : : . :

lll. SMALL SYMMETRY BREAKING

We now consider the case where the threshgjdfor
measuring on-off intermittency is much greater thanthe

logg GA

FIG. 6. The distribution®(®) of laminar phase length® of
time series from Eq(1) with a=2.75.(a) The symmetry-breaking
case with selected positive values of the perturbation parameter

symmetry-breaking parameter. We will show, by both nu-(b) The symmetric casey=0.
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15 wherev ,= —In(ax,)—In(1+&,) is a random variable. In this
In Me) \ Dy~ 099 way, we obtain a random walk i¥,. If »=0 anda=a,,

thenIn ax,~0 and 6,=0 so thatv,=0, which implies that
the random walk isinbiased But whenz# 0, then depend-
ing on the value ofy,, the termd, can be either large or
small. In particular, ify, is close toz (in the “off” state),
“‘-\N thené, is on the order of unity. Ay, moves away from the
. “off” state, the value of §,, becomes negligible. Because
7 & 5 10 12 1a there is a high probability that the trajectory remains in the
ne “off” state, we havev,<0. Thus, the random walk i¥, is
FIG. 7. The filled circles indicate the numerically computed b_|asedwhen_77¢0. Therefore_, we expect a_sudde_n, qual_|ta-
values of the number of intervald(e) of lengthe needed to cover tive 9hange In th? qharaCte”St'Cs of on-off intermittency im-
the set of points formed by the intersection of the graph of the imdN€diately aftery is increased from zero.
series ofy values generated by E¢) with the liney=yy,. We note that, even in the case g0 (no symmetry
breaking, the random walk so obtained is also biagé&dl
Our confidence in the exponential distribution of the lami-When the parametea is increased froma., the blowout
nar phase lengths in the symmetry-breaking case is bolsterdtifurcation point, becausk ax,=0 for a=a.. In this case,
by a computation of the fractal dimension of the on-off in- ©n€ also expects an exponential behavior in the distribution
termittent time series. The fractal dimension is computed a§f the laminar phase lengtt8 for sufficiently large values
follows. Set a thresholgty,> 7 and consider the set of time Of ©. In numerically or physically reasonable time scales,
intervals whose endpoints are determined by the intersectiopne still observes an algebraic distributig]. When the
of the graph ofy,, with the horizontal liney=yy,. Let N(¢) symmetry is bro.ken,. hqweyer, the sw_ltch from an algebra]c
be the number of intervals of lengthrequired to cover the 0 an exponential distribution of laminar phase lengths is
set of intersecting points of the on-off intermittent time seriesMetamorphic, in the sense that the onset of the exponential
with yg,. In the range of time interval® for which the behawor is almost |mmed|§1te at small time scalgs even when
exponential distribution®(®) is valid, we expect that 7 IS many orders of magmtude's.maller than typical scales of
N(e)~ e o, whereDy, is the fractal dimension of the on-off theé measurable physical quantities of the system.
intermittent time series. We are thus led to the analysis of the biased random walk
Venkataramankt al [4] have argued that an algebraic model (7), where we assume that, is a random variable
distribution of laminar phase lengti® is equivalent to a With a probability distributionF(v) [13]. The drift of v, is
fractal dimensionDy=1/2 of the on-off intermittent time 9iven by
series. However, if the distribution of the laminar phase
lengths® is exponential, then, as we show below, the fractal
dimension of the on-off intermittent time series g =1.
Figure 7 shows a plot of numerically computed values of
In N(e) versus Ire for a time series of Eq(1) with a=2.75  The Fokker-Planck equation fét(Y,t), the probability dis-
and »=10 “. The regression function is indicated by the tribution of finding the walker at locatio¥ at timet, is given

10

v_=f vF(v)dv.

solid line, which suggests thél, is close to 1. by [14]
B. Random walk model P P 9P
o . —+tv—o=D—, (8)
Qualitatively, the crossover from an algebraic to an expo- at aY Y2

nential distribution of the laminar phase lengths xadn-
creases from 0 can be understood as follows. Rewritd Bq.

as whereD = [ (v —U_)ZF(U)dv is the diffusion coefficient. The

range of the variabler is (02°). In the phase spacg the
drift is towardsy=1 if »=0. In the walker’s space, the drift

is towardsY=0, i.e.,v<0. We writev = —h, whereh>0.
We analyze Eq(8) in a manner that mimics what is typi-
cally done in numerical experiments for computing the lami-
nar phases. We set a threshold, sayatl (Y=0), start
from the steady-state distributiofwhich is equivalent to
eliminating transienjs and examine the probability that the
value ofy exceeds the threshold at some timerhus, we

Ynr1=aXpYnl(1—Yn) + n/ax,y,].

Consider the case where>1p>0 andy, is in the “off”
state. Theny,~7, SO Yy, i1~aX\yn,(1+4,), where &,
= ylax,y,. The probability thatx, is close to 0 is small.
Therefore, most of the timej, is on the order of 1. Letting

Yo=—Inyn, (6) have an absorbing boundary¥at0,
we obtain P(0t)=0. 9
Yos1=Ypt+vn, (7) For Y>>0, the initial condition is

016220-5
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h hy [}
P(Y,00=P(Y)=|=|exp — =/, (10 T
D D s plane
where P4(Y) is the steady-state solution of the Fokker-
Planck equation. Sincg can never reach zero, we have an-
other boundary condition
P(,t)=0. (12) /Pole
Let P(Y,s) denote the Laplace transform B{Y,t), defined * >
b
y branch
" singularity
P(Y,s)=f P(Y,t)e stdt, (12
0
where Rs>0. The initial condition in Eq.(10) yields the
following equation forP(Y,s): .
d?p  dP
D— +h—-5 —sP=—PY). (13
dy? dy FIG. 8. The integration path and branch cut for obtainitig),
Eq. (17).
The boundary conditions in Eq$9) and (11) lead to the
solution of Eq.(13), where
h hy 2 (= xe ™
P(Y,S)=—re><p<——)—exm(S)Y]], (14 t)= ————dx, 19
Ds D g(t) o (x—s%)? (19
where \(s)=(—h—h"+4Ds)/(2D), which satisfies the \hich can be evaluated by using the standard saddle-point
relation R& <0. method[16]. We obtaing(t)~t~%? and consequently, the
Let following scaling relation foMV(t):
o) —~ —3/2 —t/T
W(t)=1—J’ P(Y,)dY (15 W)~ (20
0

We can now compute the fractal dimension of the inter-
be the probability thay is absorbed a¥=0 (which is the  mittent time series and the laminar-phase distribution based
probability thaty bursts out ofy=1). The Laplace transform 0n Eq.(20). Lety(t) be the time series and choose a uniform
W(s) of W(t) is set of time intervals of lengtl to cover the set of points at

which bursts occur. The fractal dimensi@y, is given by

W) 1 ch(Y \dy 2 16 N(e)~ e Po, whereN(e) is the number ofe intervals that
S)=<~ S)aY =", are required to cover the set. NOW(¢) is the probability

s Jo S(1+1+s7) that a randomly chosen interval of lengthis a part of the

cover. Suppose that the time series has lefgtiihe total

where r=4D/h? defines the characteristic time scale of the . . : . 73
number ofe intervals contained if0,T] is Te *. Thus,

random walk model.

We now consider the inverse Laplace transform/¥fs) N(e)=(Te HW(e)~ e 52 €7 21
[15], given by (€)=(Te H)W(e)~ e e 7, (21)
which yieldsDy=1 [17].

1 jot+o

W(t)= =— W(s)eslds. (17) The distribution of laminar phase Ieng.ths can b_e com-
2mi ) —ict o puted as follows. LeR(e€) be the probability of having a
. . . laminar phase whose length is at leastLet r(e) be the
There is a pole as=0 and a branch singularity & = conditional probability that there is a laminar phase of length

—1/7. The pole corresponds te-c in the time domain and  petweene and 2¢ given that there is a laminar phase of
thus makes no contribution ¥/(t) in finite time. We choose  |engthe. Then

a branch cut frons= — to s=s*<0 as shown in Fig. 8.

The integration over the infinitesimal circular path abstit r(e)=[R(e)—R(2¢)]/R(e)=1—R(2¢€)/R(¢).
vanishes. The contribution #/(t) comes from the two in- ] N - )
tegrals, one above the branch cut and another below, alorfyote thatr(e) is the conditional probability that there is a

the negative real axis. The integration yields burst in the time interva[(no+1)e,(no+2)e] given that
there is a burst in the time intervahye, (ng+1)e], where
W(t)=g(t)e V7, (18 Nge is an arbitrary reference initial time. It follows that
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FIG. 9. Average length of the laminar phases of iterates of Eq.
(1) as a function of the perturbation parameter

N(2€)=N(e)—N(e)r(e)=N(e)[1—r(e)]. 0 10 0 g% 40
Equation(21) implies thatr(e)=1-rqe” 7" (rq is a con- FIG. 10. Probability distributiond(®) of the laminar phase
stan). Hence lengths® of iterates of the modegR5).

P P
R(e)~ e, to be general. In fact, for Eql), we are able to obtain

whereq=—5/2. NowR(e) is related to the probability dis- "gorous expressions for the probability distribution and the
tribution ®(®) of the laminar phase by average length of the laminar phases that agree with those
from the random walk model.
® We have performed numerical tests on various models of
R(E):j ©(0)do. (22 on-off intermittency with perturbations and have found a ro-
‘ bust exponential behavior in the distribution of the laminar
Therefore, the probability distribution of the laminar phasesPhase lengths. Figure 10 shows, on a semilogarithmic scale,
is exponential, the probability distribution of the laminar phases obtained at
yin=10"2 for the model
DO(0)~0% 9~ 97 for @>1. (23
- : : Xn+1=T(Xn), (25)
One prediction of the biased random walk model is that
the average length of the laminar phase can be related to the B
drift —h and the diffusion coefficierd as7=4D/h?. Heu- Yn+1=aXYn(1—Yyn) + e+ €gcog2myy),
ristically, we expect the dependence of the drift and the dif- . 5
fusion coefficient on the perturbation parameteo be loga- wher_esT(x) is the tent map and=2.75, e=10"", and &,
rithmic for the following two reasons. First, the random-walk = 10 *- The exponential nature of the probability distribu-
picture is valid in the logarithmic space of the intermittent ion Of the laminar phase lengths is apparent.
variable in the phase space, and second, as we have argued,
the term that causes a bias in the random walk is almost IV. DISCUSSION

independent ofy. Thus, we expect the following scaling . . )
relation for the average length of the laminar phase: Perturbations of an on-off intermittent system that destroy

the invariant manifold have a distinct impact on the proper-
()~ 1n 7|, (24) ties of the dynamics. Most importantly, there is a metamor-

phosis of the scaling law for the probability distribution of
where y>0 is the scaling exponent. This scaling relationthe lengths of the laminar phases that is exponential, in con-
implies that the average length of the laminar phases intrast to the algebraic distribution in a system with an invari-
creases only logarithmically as the amount of perturbation isnt manifold.
decreased and, as a practical matter, many orders of decreaseMoreover, we have shown that the relative amplitude of
in » yield only an incremental increase in the average lengthhe symmetry breaking and the threshold amplitude at which
of the laminar phases. For example, in the simple model Ecqpne defines the “off” state are important. When the thresh-
(1), we find that, whery is decreased from 16 to 10 1°, old amplitude is comparable to the size of the perturbation,
the value ofr(#) increases only by a factor of 10. Figure 9 then we have the following.
shows a plot of logyr(7) versus logg|log,on| for a=2.75. (i) It is possible to characterize an “off” state in a manner
The approximate linear behavior for small valueszobup-  that yields an exponential probability distribution for the
ports the scaling law in Eq.24). We stress, however, the lengths of the laminar phases. In addition, our definition of
scaling law(24) is only meant to be speculatiy0]. the “off” state generates a probability measure for the iter-

The predictions from the biased random walk model doates of the dynamical system whose lii@is the perturbation

not depend on any specific details of the underlying on-oftends to 0 is the natural measure of the iterates of the origi-
intermittent system. Therefore, we expect these predictionsal on-off intermittent system.
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(ii) The lengths of the observed laminar phases are shosurement accuracy leads to uncertainty as to whether a sym-
on the average. metry breaking has occurred. If it is possible to run the

When the threshold amplitude is orders of magnitudeexperiment long enough to collect reasonable statistics on
greater than the size of the perturbation, then we have theme distribution of the laminar phase lengths, then one can
following. check whether the distribution is exponential. An exponen-

(iii) The distribution of the laminar phase lengths is expo-tial distribution implies that the symmetry has been broken.
nential, in contrast to the algebraic distribution when there is
an invariant manifold.

(iv) The fractal dimension of the level sets of the inter-
mittent time series changes discontinuously fiog= 1/2 in D.M. and E.J.K. are supported by the National Science
the unperturbed case @,=1 in the perturbed case. Foundation under Grant No. ECS-9807529. Y.C.L. is sup-

Our characterization of the probability distributions of the ported by the Air Force Office of Scientific Research under
laminar phase lengths has an interesting practical applicgsrant No. F49620-98-1-0400 and by the National Science
tion. Suppose that in a laboratory experiment, limited meaFoundation under Grant No. PHY-9996454.
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